Skip to main content
All of our models share the following capabilities:

Model Families

Choose a model based on your desired functionalities. Each individual model card has specific details on deployment and customization.

Model Formats

All LFM2 models are available in multiple formats for flexible deployment:
  • GGUF — Best for local CPU/GPU inference on any platform. Use with llama.cpp, LM Studio, or Ollama. Append -GGUF to any model name.
  • MLX — Best for Mac users with Apple Silicon. Leverages unified memory for fast inference via MLX. Browse at mlx-community.
  • ONNX — Best for production deployments and edge devices. Cross-platform with ONNX Runtime across CPUs, GPUs, and accelerators. Append -ONNX to any model name.

Quantization

Quantization reduces model size and speeds up inference with minimal quality loss. Available options by format:
  • GGUF — Supports Q2_K, Q3_K_M, Q4_K_M, Q5_K_M, Q6_K, and Q8_0 quantization levels. Q4_K_M offers the best balance of size and quality. Q8_0 preserves near-full precision.
  • MLX — Available in 4bit and 8bit variants. 8bit is the default for most models.
  • ONNX — Supports FP16 and INT8 quantization. INT8 is best for CPU inference; FP16 for GPU acceleration.

Model Chart

ModelHFGGUFMLXONNXTrainable?
Text-to-text Models
LFM2.5 Models (Latest Release)
LFM2.5-1.2B-Instruct✓✓✓✓Yes (TRL)
LFM2.5-1.2B-Thinking✓✓✓✓Yes (TRL)
LFM2.5-1.2B-Base✓✓✗✓Yes (TRL)
LFM2.5-1.2B-JP✓✓✓✓Yes (TRL)
LFM2 Models
LFM2-8B-A1B✓✓✓✗Yes (TRL)
LFM2-2.6B✓✓✓✓Yes (TRL)
LFM2-1.2B Deprecated✓✓✓✓Yes (TRL)
LFM2-700M✓✓✓✓Yes (TRL)
LFM2-350M✓✓✓✓Yes (TRL)
Vision Language Models
LFM2.5 Models (Latest Release)
LFM2.5-VL-1.6B✓✓✓✓Yes (TRL)
LFM2 Models
LFM2-VL-3B✓✓✓✗Yes (TRL)
LFM2-VL-1.6B✓✓✓✗Yes (TRL)
LFM2-VL-450M✓✓✓✗Yes (TRL)
Audio Models
LFM2.5 Models (Latest Release)
LFM2.5-Audio-1.5B✓✓✗✗Yes (TRL)
LFM2 Models
LFM2-Audio-1.5B✓✓✗✗No
Liquid Nanos
LFM2-1.2B-Extract✓✓✗✓Yes (TRL)
LFM2-350M-Extract✓✓✗✓Yes (TRL)
LFM2-350M-ENJP-MT✓✓✓✓Yes (TRL)
LFM2-1.2B-RAG✓✓✗✓Yes (TRL)
LFM2-1.2B-Tool Deprecated✓✓✗✓Yes (TRL)
LFM2-350M-Math✓✓✗✓Yes (TRL)
LFM2-350M-PII-Extract-JP✓✓✗✗Yes (TRL)
LFM2-ColBERT-350M✓✗✗✗Yes (PyLate)
LFM2-2.6B-Transcript✓✓✗✓Yes (TRL)